

www.maptek.com

Breaking the
Billion-Variable Barrier

in Real-World
Optimization Using

a Customized
Evolutionary Algorithm

Kalyanmoy Deb

Computational Optimization and Innovation Laboratory
Dept. of Electrical and Computer Eng.

Michigan State University
East Lansing, MI 48824, USA

kdeb@egr.msu.edu

Christie Myburgh
Principal R&D Engineer

Maptek Pty Ltd
Northbridge, WA 6003, Australia

christie.myburgh@maptek.com.au

ABSTRACT
Despite three decades of intense studies of
evolutionary computation (EC), researchers outside
the EC community still have a general impression
that EC methods are expensive and are not efficient
in solving large-scale problems. In this paper, we
consider a specific integer linear programming (ILP)
problem which, although comes from a specific
industry, is similar to many other practical resource
allocation and assignment problems. Based on a
population based evolutionary optimization
framework, we develop a computationally fast
method to arrive at a near-optimal solution
repeatedly. Two popular softwares (glpk and
CPLEX) are not able to handle around 300 and 2,000
integer variable version of the problem, respectively,
even after running for several hours. Our proposed
method is able to find a near-optimal solution in less
than second on the same computer. Moreover, the
main highlight of this study is that our method scales
in a sub-quadratic computational complexity in
handling 50,000 to one billion (109) variables. We
believe that this is the first time such a large-sized
real-world constrained problem has ever been
handled using any optimization algorithm. The study
clearly demonstrates the reasons for such a fast and
scale-up application of the proposed method. The
work should remain as a successful case study of EC
methods for years to come.

Keywords
Evolutionary Computing; Large-scale optimization,
Billion-variable study

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

GECCO ’16, July 20-24, 2016, Denver, CO, USA

© 2016 ACM. ISBN 978-1-4503-4206-3/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2908812.2908952

mailto:kdeb@egr.msu.edu
mailto:christie.myburgh@maptek.com.au
http://dx.doi.org/10.1145/2908812.2908952

www.maptek.com

1. INTRODUCTION
The performance of an optimization algorithm is sensitive to the number of variables [2, 7]. As the number
of variables increase, the number of interactions among them increase and an optimization algorithm
must have the ability to detect all such interactions to construct a near-optimal solution. Another difficulty
arises from the discreteness of the search space, as the continuity and gradient information become
unavailable in such problems. Most point-based optimization algorithms [8, 16] handle the latter issue by
first assuming that the search space is continuous and then branching the problem into two non-
overlapping problems based on one of the discrete variables. For a discrete search space problem
having only a few variables, the concept works reasonably well, but when the problem has a large
number of variables, the number of branched problems becomes exponentially large. This process slows
the overall algorithm and often an algorithm keeps on running for hours and still does not show any sign
of convergence.

The above-mentioned difficulty with discrete search space is also true for linear programming (LP)
problems. Although standard LP problems can solve tens of thousands or even a million-variable
problem, but they show vulnerabilities in handling discrete variable problems. Ironically, many real-world
optimization problems are idealized and formulated as a linear or quadratic programming problems, but
the continuous assumption of originally discrete variables may not always be assumed. For example, a
variable indicating the number of teeth in a gear design problem, the number of floors in a high-raised
building construction problem, the number of stocks to invest in portfolio management problem cannot be
assumed as a continuous variable.

In this paper, we address a particular integer linear programming problem and algorithm for finding a
near-optimal solution. Theoretically, the problem falls into the category of a knapsack problem [14], which
is known to be weakly NPhard to solve to optimality. The main crux of our proposed algorithm is that it is
able to find a near-optimal solution for an extremely large range of variables (from 50 thousand variables
to one billion variables) in a polynomial computational time. Our approach uses a population-based
approach [9, 11, 3] in which more than one solution is used in each iteration to collectively create a new
population. Despite a few earlier studies on billion-variable Boolean and unconstrained (onemax)
problems [10, 12] and on a real-parameter unconstrained embedded problem [17] in which all but two
variables have no effect on the objective function, this study is remarkable from two aspects: (i) the study
clearly portrays the fact that if a near-optimal solution is desired, it is possible to develop a polynomial
time algorithm for addressing weakly NP-hard problems, (ii) the study handles, for the first time, a billion
variable optimization problem originated from a real-world constrained optimization problem, and (iii) the
study directly compares with state-of-the-art popular commercial and public-domain softwares in
establishing superiority of population-based methods in solving large-scale problems.

The remainder of the paper formulates the casting scheduling problem and reveals the integer linear
programming nature of the problem in Section 2. The next section describes our proposed population-
based integer linear programming (PILP) algorithm by detailing its operators and pseudocodes.
Thereafter, Section 4 evaluates the performance of two commonly-used optimization softwares – one
publicly available glpk and other commercially available CPLEX – on small version of the casting
scheduling problem. Although these methods have reportedly performed well on generic LP problems
having millions of continuous variables, their vulnerability in handling discrete variables becomes clear
from the study. Despite the need for handling about 20,000 variables in practice, they are not able to
solve even a 2,000- variable version of the casting scheduling problem. In Section 5, the same problems
are solved using our proposed PILP algorithm in less than a second of computational time repeatedly.
The section presents a scale-up study, in which our proposed PILP method successfully handles more
than one billion variables and finds a near-optimal solution in a reasonable computational time. The
sheer number of variables and the fast computational time recorded for finding a near-optimal solution for
billion-variable extension of a real-world problem probably make this study the first-ever optimization
study to achieve this feat. Conclusions of this study are discussed in Section 6.

www.maptek.com

2. CASTING SCHEDULING PROBLEM
The problem comes from a foundry in which objects of various sizes and numbers are cast by melting
metal on a crucible of certain size (say 𝑊𝑊). Each such melt is called a heat. The amount of metal used in
a heat may not add up to W exactly and some metal may remain in the crucible as unused from the heat.
This introduces an inefficiency in the scheduling process and must be reduced to a minimum by using an
appropriate scheduling process. The ratio of molten metal utilized to make objects to the crucible size (or
metal melted) is called the metal utilization for the heat.

To formulate the casting scheduling optimization problem, we assume that there are a total of 𝑁𝑁 objects
are to be made with a demand of exactly 𝑟𝑟𝑗𝑗 (>0, an integer) copies for 𝑗𝑗-th object. Each object has a fixed
weight 𝑤𝑤𝑖𝑖 in kg, thereby requiring a total of 𝑀𝑀 = ∑ 𝑟𝑟𝑗𝑗𝑤𝑤𝑗𝑗𝑁𝑁

𝑗𝑗=1 kg of metal to make all copies of 𝑗𝑗-th object.
Without loss of generality, let us also assume that 𝑊𝑊𝑖𝑖 kg of metal is melted at 𝑖𝑖-th heat, thereby allowing
us to consider a different crucible size at each heat. Then, the total number of heats (𝐻𝐻) required to melt
the above metal with an expected average efficiency of 𝜂𝜂 metal utilization from every heat can be
computed by finding the minimum 𝐻𝐻 to solve the following equation: ∑ 𝜂𝜂𝑊𝑊𝑖𝑖 ≥ 𝑀𝑀𝐻𝐻

𝑖𝑖=1 . If all heats use an
identical crucible of capacity 𝑊𝑊, then, the above condition becomes 𝐻𝐻 = � 𝑀𝑀

𝜂𝜂𝜂𝜂
�.

To find an optimal assignment of objects from each heat, we need to solve an optimization problem with
a two-dimensional 𝐻𝐻 × 𝑁𝑁-matrix of variables 𝑥𝑥𝑖𝑖𝑖𝑖 with 𝑖𝑖 = 1,2, … ,𝐻𝐻 and 𝑗𝑗 = 1,2, … ,𝐻𝐻, which represents the
number of copies of 𝑗𝑗-th object to be made from the 𝑖𝑖-th heat. Since none, one, or multiple complete
copies can be made from each heat, the variable 𝑥𝑥𝑖𝑖𝑖𝑖 can only take an integer value between zero and 𝑟𝑟𝑗𝑗.
This restriction of the problem makes the optimization problem a discrete programming problem.
Moreover, there are two sets of constraints in the problem that an optimal assignment must satisfy. First,
the total amount of metal used in the 𝑖𝑖-th heat must be at most the size of the crucible (𝑊𝑊𝑖𝑖), that is,
∑ 𝑤𝑤𝑗𝑗𝑁𝑁
𝑗𝑗=1 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑖𝑖 for all 𝑖𝑖 = 1,2, … ,𝐻𝐻. Second, exactly 𝑟𝑟𝑗𝑗 copies of 𝑗𝑗-th object is to be made, not one more

or not one less, thereby creating 𝑁𝑁 equality constraints of the type: ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝐻𝐻
𝑖𝑖=1 = 𝑟𝑟𝑗𝑗 for all 𝑗𝑗 = 1,2, … ,𝑁𝑁. We

now present the resulting integer linear programming problem, as follows:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓(𝑥𝑥) =
1
𝐻𝐻
�

1
𝑊𝑊𝑖𝑖

�𝑤𝑤𝑗𝑗

𝑁𝑁

𝑗𝑗=1

𝐻𝐻

𝑖𝑖=1

𝑥𝑥𝑖𝑖𝑖𝑖 , (1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡 �𝑤𝑤𝑗𝑗

𝑁𝑁

𝑗𝑗=1

𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑊𝑊𝑖𝑖 , for 𝑖𝑖 = 1,2, … ,𝐻𝐻, (2)

 �𝑥𝑥𝑖𝑖𝑖𝑖

𝐻𝐻

𝑖𝑖=1

= 𝑟𝑟𝑗𝑗 , for 𝑗𝑗 = 1,2, … ,𝑁𝑁, (3)

 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0 and is an integer (4)

A little thought will also reveal that the above problem is a multiply constrained bounded knapsack
problem [13], which is known to be a weakly NP-complete problem and is difficult to solve. However,
pseudo-polynomial time complexity algorithms are possible to be developed for these problems, if a
near-optimal solution is desired. Due to the combination of equality and inequality constraints, the
problem is non-separable. Dynamic programming (DP) methods [1] with linear complexity is available
for solving 0-1 knapsack problem, but no DP methods are available for solving the above non-separable
ILP problem.

www.maptek.com

3. A CUSTOMIZED COMPUTATIONALLY FAST ALGORITHM
Our proposed approach is motivated by an earlier preliminary study [6] in which a customized genetic
algorithm with a problem-specific initialization and genetic operators were used. In this paper, we make
those implementations computationally more efficient, evaluate the modified algorithm thoroughly, and
extend its application to an unprecedented billion-variable problem.

3.1 Customized Initialization
To start a run, 𝑛𝑛 randomly generated solutions are created, but every solution is guaranteed to satisfy the
linear equality constraints of the following type:

 �𝑦𝑦𝑗𝑗

𝑁𝑁

𝑗𝑗=1

= 𝑎𝑎, (5)

where 𝑎𝑎 is a predefined integer. For this purpose, first, a random set of integers within 𝑦𝑦𝑗𝑗 = [0, 𝑎𝑎] are
created and then all 𝑁𝑁 variables are repaired as follows: 𝑦𝑦𝑗𝑗 ← 𝑦𝑦𝑗𝑗

𝑎𝑎
∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1

 . This repair approach may not

produce an integer value for 𝑦𝑦𝑗𝑗. In such a case, the real number 𝑦𝑦𝑗𝑗 is rounded to its nearest integer value.
Thereafter, if the sum of adjusted integer values is not 𝑎𝑎, reduction or increase in one of more adjusted
integer values are made at random to make sure the equality constraint is satisfied. The above repair is
achieved by using two mutation operators which we describe in Section 3.4. The repaired solution is
then evaluated.

3.2 Evaluation of Fitness Value
Every population member 𝑥𝑥 is evaluated by adding the objective function value 𝑓𝑓(𝑥𝑥) described in
Equation 1 and a penalty value from constraint violation, if any, computed as follows [4]:

 𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) − 𝑅𝑅 ����𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑗𝑗

𝐻𝐻

𝑖𝑖=1

�
𝑁𝑁

𝑗𝑗=1

2

+ ��
1
𝑊𝑊𝑖𝑖

�𝑤𝑤𝑗𝑗𝑥𝑥𝑖𝑖𝑖𝑖 − 1
𝑁𝑁

𝑗𝑗=1

�
𝐻𝐻

𝑖𝑖=1

2

� (6)

Since the maximum expected objective value is 𝜂𝜂, the maximum possible feasible fitness value is also 𝜂𝜂.
A penalty parameter value of 𝑅𝑅 = 103 is used throughout this study. This value is chosen so that a
violation of 1 kg from vessel capacity from maximum possible attainable objective value (one)
corresponds to a fitness smaller than chosen target 𝜂𝜂.

3.3 Customized Recombination Operator
The purpose of a recombination operator is to mix partial information from two or more parent solutions
and create one or more new offspring solutions [9]. We consider two parent solutions heat-wise. For each
heat (index 𝑖𝑖), the heat utilization for the heat 𝑈𝑈𝑖𝑖 is compared among all 𝑝𝑝 solutions and then all variables
𝑥𝑥𝑖𝑖𝑖𝑖 for 𝑗𝑗 = 1, 2 . . . ,𝑁𝑁 from the largest 𝑈𝑈𝑖𝑖 solution is copied to the offspring solution 𝑦𝑦. This is repeated for
all 𝐻𝐻 heats to construct the new offspring solution. The linearity of problem makes such a recombination
operator to create better (than parents) solutions.

www.maptek.com

3.4 Customized Mutation Operators
Above recombination operator may not satisfy the equality constraints (Equation 3) automatically. We
use the first mutation operator to try to satisfy all 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 constraints.

For a solution, all 𝑥𝑥𝑖𝑖𝑖𝑖 values for 𝑗𝑗th object are added and compared with the desired number of copies 𝑟𝑟𝑗𝑗.
If the added quantity is the same as 𝑟𝑟𝑗𝑗, the corresponding equality constraint is already satisfied and no
further modification is needed. If the added quantity is larger than 𝑟𝑟𝑗𝑗, we identify the heat that requires
molten metal closest to or more than the crucible size. We then decrease one assignment from this heat
and repeat the process by recalculating the metal utilization of each heat.

Next, the modified solution is sent to the second mutation operator which attempts to alter the decision
variables further without violating the equality constraints but attempting to satisfy the inequality
constraints as much as possible. The heat having the maximum violation in inequality constraint is
chosen for fixing. A randomly chosen object (say, objID) with non-zero assignment is selected and one
assignment is reduced in an attempt to satisfy the inequality constraint. To satisfy the respective demand
equality constraint, the heat with the maximum available crucible space is chosen and one assignment
for object objID is increased. This process ensures that the equality constraint is always satisfied and a
repetitive application of the above process is expected to satisfy inequality constraints as well. After all
infeasible heats are repaired as above, the feasibility of the overall solution is checked. If the solution is
still infeasible, a constraint violation equal to the sum of the normalized violations of all infeasible heats is
assigned to the fitness function, as given in Equation 6.

3.5 Overall Time Complexity
The initialization routine requires 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛) operations. The recombination operator requires 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛)
copying operations. The first mutation operator requires 𝑂𝑂(𝑁𝑁𝑁𝑁) operations for each new solution, thereby
requiring a total of 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛) operations. The while loop in the second mutation operator may take a few
iterations, which is unknown for any problem, but the operations inside the loop is only 𝑂𝑂(𝐻𝐻). Thus,
assuming a constant number of iterations inside the while loop, the overall the complexity of the
proposed PILP per iteration is 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛). The number of iterations required to achieve the desired target
solution is not known beforehand, but in all our simulations, a maximum iteration of 20 to 30 was enough,
even for the one billion variable version of the problem.

4. RESULTS USING INTEGER LINEAR PROGRAMMING (MILP)
To investigate the ease (or difficulty) of solving the casting scheduling problem, first, we use two
commonly-used mixed-integer linear programming softwares which use a different point-based
optimization approach. One of them is the freely available Octave’s glpk software which uses GNU
Linear Programming Kit (GLPK) package for solving largescale integer linear programming problems.
The integer restriction of the variables is achieved with the branch-and cut method which is a
combination of branch-and-bound and cutting plane method [15]. The second is a commercially available
popular software CPLEX, which also uses the branch-and-cut method as a core optimization method. All
simulations of this section are run on a Dell Precision M6800 Intel Core I7 4940MX CPU with 3.10 GHZ
and having 32 GB RAM and Windows 8.1 Pro operating system.

www.maptek.com

Table 1: Casting scheduling problem parameters used for initial comparative study

First, we choose the casting scheduling problem having a reasonably small number of variables
presented in Table 1. With a single 650 kg crucible used for each heat and an expected metal utilization
of 𝜂𝜂 = 99.7%, at least ⌈20, 000/(0.997 × 650)⌉ or 31 heats will be required to melt the requisite amount
of metal to make all 200 objects. With 31 heats, a maximum heat utilization of 20, 000/(31 × 650) or
99.256% is expected. First, we apply the glpk routine of Octave software with bounds on each variable
as 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ [0, 15]. After running for one hour on the above-mentioned computer for each run starting from a
different initial guess solution, the glpk routine could not come up with any feasible solution in all 10
runs. We extended one of the runs up to 15 hours on the same computer and still no feasible solution
was found. This may indicate that the upper bound (99.256%) on metal utilization may not be possible to
achieve in 31 heats.

Next, we use IBM’s CPLEX software to solve the 310-variable first. Again, variables are restricted to vary
within [0, 15]. Interestingly, the CPLEX software is able to find a feasible solution with 99.256% metal
utilization in only 0.05 sec on the same computer, on an average, on 10 different runs. This clearly
states that the CPLEX software is more efficient in solving this integer LP problem than the glpk
routine of Octave.

Our proposed PILP algorithm is applied next. Interestingly, the PILP algorithm is also able to solve the
problem, but in only 0.04 sec and requiring only 150 solution evaluations (compared to 249 solution
evaluations needed by CPLEX) to achieve an identical metal utilization.

To evaluate further, we scale up the number of orders of each object to 65 copies (except the first object
to be made 63 copies). This requires a total of 650 objects to be made requiring 64, 650 kg of molten
metal. This needs a total of ⌈64, 650/(0.997 × 650)⌉ or 100 heats, instead of 31 heats required before.
This problem introduces 100 × 10 or 1,000 variables to the corresponding optimization problem. The
maximum possible metal utilization is 64, 650/(100 × 650) or 99.462%. Interestingly, the CPLEX
software is also able to find a feasible solution with 99.462% metal utilization in only 0.13 sec and using
only 947 solution evaluations, on an average over 10 runs, which is a remarkable result. Our proposed
PILP algorithm, with 20 population members, is also able to repeatedly find the same metal utilization
(99.462%) solution with a much smaller computational time (0.05 sec) and in less than one quarter of
solution evaluations than CPLEX, on an average over 10 independent runs.

What is more interesting is when we scale up the problem further (the first object requiring 127 copies
and all other 130 copies) to require a total of 129,475 kg of molten metal. With a crucible size of 650 kg
per heat, this requires at least ⌈129, 475/(0.997 × 650)⌉ or 200 heats. Thus, the number of variables to
the resulting optimization problem increases to 2,000 and the maximum possible metal utilization is
129, 475/(200 × 650) or 99.596%. This time, the CPLEX software is 𝑛𝑛𝑛𝑛𝑛𝑛 able to find a feasible solution in
any of the 10 runs (each simulation was run for an hour), even when one of the runs was extended up to
15 hours on the abovementioned computer. A particular CPLEX run formulated 88,882,899 branches
having 10,382 unsolved branches after 1.65(108) iterations requiring 4,594 sec (1 hour 16 min) of
computational time, and still it could not find any feasible solution. Our PILP algorithm, with only 20
population members, is able to solve the same problem in 0.19 sec requiring only 224 solution
evaluations, on an average, in 10 runs. A typical foundry may plan for a casting scheduling for a month,
requiring about 𝐻𝐻 = 3, 200 heats and for about 𝑁𝑁 = 10 objects. This makes a total number of variables

No. 1 2 3 4 5 6 7 8 9 10 Total
Wt. (kg)
Copies

175
20

145
20

65
20

55
20

95
20

75
20

195
20

20
20

125
20

50
20

200

Total (kg) 3500 2900 1300 1100 1900 1500 3900 400 2500 1000 20,000

www.maptek.com

to be as high as 32, 000. Clearly, the current state-of-the-art softwares (such as CPLEX) are not capable
of addressing these practical problems.

The above results clearly demonstrate one aspect: when the problem size is large, the point-based
optimization algorithms for handling an integer LP problem using the branch-and-cut fix-up for handling
discrete variables is not efficient – there are simply too many branches for an algorithm to negotiate in a
reasonable amount of time or iterations. As demonstrated here, population-based optimization algorithms
have a greater potential in solving such problems.

5. RESULTS USING PILP
Having demonstrated the usefulness of the population based approach for handling the specific integer-
valued casting scheduling problem, we now evaluate our proposed approach more rigorously. All
simulations of this section are run on a 2×Intel 8-Core Xeon-2640V3 2.66 GHz, 20 MB Cache, 8GT/sec,
16 threads, LGA 2011 computer having ASUS Z10PE-D16/4L Server Motherboard with 16×16GB DDR4
ECC DIMM 2133 Mhz RAM having a 1×Galaxy GTX 980 SOC Nvidia graphics card with Windows 8.1
Pro 64Bit OEM. This computer was specially procured for performing very large-sized problems reported
in this study.

5.1 Exploring Extent of Feasible Solutions
First, we investigate the extent of the feasible region of the entire integer search space, we consider a
million-variable version of the problem. Table 2 shows the problem parameters used for this purpose.
Total number of objects is 5,50,666 and total metal required to cast them is 56,352,140 kg. To bring the
problem close to practice, two crucibles of sizes 650 kg and 500 kg are used on alternate days with 10
and 13 heats on respective days. A total of 𝐻𝐻 = 100, 000 is needed. Since there are 𝑁𝑁 = 10 objects,
the total number of variables in the optimization problem is 1,000,000 (one million).

Table 2: Casting scheduling problem parameters used as default in most of this study.

To investigate the ease of creating a feasible solution at random for the above one million variable
problem, first, we create 10,000 solutions at random. It is observed that none of them is feasible. The
best, median and worst fitness values of these random solutions are found to be −7, 029, 705,
−7, 219, 503, and −7, 380, 404, respectively. Since these values are negative, they indicate that the
respective solutions are all infeasible. Note that for a feasible solution, the fitness value is always positive
and has a maximum value of 𝜂𝜂 = 0.997 (for a target of 99.7% target utilization).

To investigate the effect of two repair mechanisms (mutation operators) suggested in this study, we
apply two mutation operators in sequence to try to repair each solution. However, even after repair, none
of the 10,000 randomly created solutions could be made feasible by the mutation operators alone, but
the extent of constraint violation has reduced after the mutation operators are applied. The best,
median and worst objective values of the mutated solutions are −1, 385, 578, −1, 411, 499, and
−1, 447, 657, respectively.

No. 1 2 3 4 5 6 7 8 9 10
Wt. (kg)
Copies

175
59,227

145
58,329

65
53,327

55
53,229

95
53,429

75
53,526

195
57,022

20
52,322

125
58,229

50
52,026

Total
(106 kg) 10.364 8.458 3.466 2.928 5.076 4.014 11.119 1.046 7.279 2.601

www.maptek.com

5.2 A Typical Simulation
We now apply our proposed PILP algorithm to solve the above one million version of the casting
scheduling problem. To investigate its performance, we use a population of size 40 and run PILP 11
times from different random populations. The population-best and population-average fitness values are
recorded for each run and the best, median and worst fitness values over 11 runs are noted. Figure 1
plots one minus the fitness value on the 𝑦𝑦-axis in log scale versus the iteration counter on the 𝑥𝑥-axis.
This is done so as to expect the optimized solution to reach a value of (1 − 0.997) or 0.003. Since all
infeasible solutions have negative values, a 𝑦𝑦-axis value larger than one indicates that the corresponding
solution is infeasible. In other words, all solutions having a 𝑦𝑦-axis value equal to or less than one are
feasible. Since the best fitness value can be 0.997 (expected target metal utilization), the best expected
has a 𝑦𝑦-axis value of (1 − 0.997) or 0.003. An almost linear drop in best and average 𝑦𝑦-axis values with
iteration indicate the fitness values approach the desired target in an exponentially fast manner with
iteration counter. When solutions come closer to the feasible region (at around iteration 15), the
convergence is even faster. It can be seen from the figure that the algorithm takes a minimum of 16
iterations to find a feasible solution in any of the 11 runs. Different runs find the target solution (with a
transformed fitness value of 0.003) within 16 to 20 iterations.

Figure 1: Iteration-wise variation of population-average,
population-best fitness value and computational time for
one million version of the problem.

The right-side 𝑦𝑦-axis marks the computational time for each iteration in seconds. The plot with its run-
wise variations, indicate that the maximum computational time is spent in completing the first iteration
and thereafter the time has a monotonic non-increasing trend with iterations. This is because, with
iterations, more inequality constraints with volume requirement get satisfied, thereby reducing the time
needed to execute the second mutation operator.

The combined effect of tournament selection operator to choose better parent solutions, recombination
operators to combine good parts of two parents into one offspring, and mutation operators to repair
offspring solutions is able to find increasingly better and better solutions with iterations and locate the
desired target solution in only 16 to 18 iterations. This shows a typical working of our proposed PILP
methodology on a million-variable version problem. Such a large-sized optimization problem has been
rarely attempted to be solved in practice and with so few solution evaluations and with so less
computational time.

www.maptek.com

5.3 Estimating an Appropriate Population Size
An important parameter in a population-based optimization method is the size of the population. To study
the effect of population size, we use a wide range of population sizes (6 to 80), but limit a maximum of
10,000 solution evaluations. Table 3 tabulates the best, median and worst objective value and number of
solution evaluations for different population sizes over 11 runs. It is clear that a population of size 34
produces the best median performance over 11 runs. Figure 2 shows the best, average and worst fitness
value obtained for each population size. When the population size is small, there are not enough
samples in the population to provide an initial or temporal diversity needed to find new and improved
solutions for this large-scale problem. However, when an adequate population size (here, a population of
28 members) is used, our customized recombination operator is able to exploit the population diversity to
create new and improved solutions. With an increase of population size from 28, additional diversity is
maintained and the proposed algorithm is able to solve the problem every time. This is a typical
performance demonstrated by a successful recombinative genetic algorithm in other studies [5].

Table 3: Fitness value and the number of solution evaluations are tabulated against different population
sizes for 1M version. Results for the smallest median solution evaluations are marked in bold.

Figure 2: Effect of population size on the
performance on the casting scheduling problem

Pop.
Size

Fitness Value Solution Evaluations
Best Median Worst Best Median Worst

6 -240,191.10 -358,443.74 -426,859.38 42 210 301
10 -114,310.68 -144,787.23 -226,824.27 374 528 968
20 -9,978.56 -20,500.75 -30,271.75 924 2,079 2,100
28 0.997 0.997 0.997 551 928 2,639
34 0.997 0.997 0.997 630 665 700
40 0.997 0.997 0.997 656 738 820
50 0.997 0.997 0.997 663 714 867
60 0.997 0.997 0.997 793 793 854
80 0.997 0.997 0.997 1,053 1,053 1,134

www.maptek.com

5.4 Effect of Recombination and Mutation Operators
Next, we consider the same one million version of the problem and study the sensitivity of each PILP
operator. At any iteration 𝑡𝑡, after the new offspring solutions are created by recombination and mutation
operators, we count the number of offspring solutions that are better than the previous (at iteration
(𝑡𝑡 − 1)) population-best and population-average fitness values. Then, we plot the variation of the
percentage of these new and improved offspring members from previous population-average fitness
values with iteration counter in Figure 3. In the figure, the minimum, first quartile, (in a thick line), third
quartile, and maximum percentage of better offspring solutions are shown with five lines within which all
11 runs lie. The figure shows that from the entire duration of the runs, our PILP algorithm is able to
continuously produce better solutions (near 100%). For the first 10 iterations, almost 100% of offspring
population is better than the previous iteration average solution. Although it is difficult to produce near
100% solutions in all iterations, it is astonishing that at least 70% offspring population members are
better than before in any iteration of any run. Until about 10 iterations (we call these initial iterations as
the 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 phase), a large portion of the offspring population is better than previous population-best
solutions for a median run. By this time, the penalty for infeasible solutions have reduced from 1.4(106)
to about 3(104). From here on, the algorithm finds it difficult to continuously produce better offspring than
the previous-best solutions. This is because during these critical intermediate iterations, the algorithm
passes through a stage where there exist many solutions of similar objective value and while there are
few offspring solutions better than previous-best solutions found, other offspring solutions are also not far
behind. This consolidation of good solutions during the intermediate phase (we call this as the
consolidation phase) allows our PILP to exploit the multitude of near target solutions to be discovered so
that in the final phase (we call it the culminating phase), a rapid convergence to the target solution is
achieved. We observe these three distinct phases in all our simulation runs, but for brevity we do not
show other results.

Figure 3: Percentage of offspring population
having better fitness value than previous
iteration population-average solution.

5.5 Effect of Problem Size: The Scale-up Study
This subsection provides the most intriguing results of this paper. We evaluate the performance of the
PILP algorithm on a scale-up study on problem size, in which variables span from 50,000 to a staggering
and unprecedented one billion. All problems are run 5 times, except 100M variables or more which are
run 3 times, to complete simulations in a reasonable time. For every problem, the desired accuracy is
fixed at 99.7%, meaning that as soon as a feasible solution with a metal utilization of 99.7% is obtained,

www.maptek.com

the algorithm is terminated and the overall CPU time and number of heat updates from the start to
termination is recorded. If no such solution is found in a maximum of 200 iterations, the run is
considered unsuccessful.

The population size is kept fixed to 60 for all problems. Table 4 shows the statistics of the obtained
results using the PILP algorithm. The second and third column show the average and standard deviation
of computational time for multiple runs of PILP from different initial populations. The next two columns
show the same for total number of heat updates (HU), indicating the total number of variable
manipulations performed by the PILP algorithm from start to completion. The next two columns indicate
the average number of heat updates (heat updates divided by 𝑁𝑁 × 𝐻𝐻). It is interesting to note that
although heat updates increase with the problem size, the average heat updates remain more or less the
same at around 1,000. The final two columns show the average and standard deviation of total number
of solution evaluations. Since a population of size 60 is used for all problems, this means that all
problems require between 17 to 21 iterations to find the desired solution. This validates our complexity
computation of 𝑂𝑂(𝑛𝑛𝑛𝑛𝑛𝑛) per iteration performed in Section 3.5. Since 𝑛𝑛 is identical to all problems and
number of iterations is more or less same, the average heat update (HU/𝑁𝑁 × 𝐻𝐻) is almost identical for all
problems. We discuss further about the complexity issue in Figure 5.

Table 4: PILP results on scale-up study.

Problem Size
Time (s) Heat Update Avg HU Soln. Eval.

Avg. SD Avg. SD Avg. SD Avg. SD
50,000 7 0.2 4,464,856 100,699 953 20 1,020 52

100,000 26 0.6 8,807,564 167,494 941 17 1,032 17
500,000 143 4 46,064,337 1,184,570 981 24 1,128 35

1,000,000 308 9 91,345,801 2,048,330 973 20 1,080 35
5,000,000 1,749 53 459,919,887 12,615,715 980 25 1,092 35

10,000,000 4,207 124 476,903,439 19,038,115 1,000 19 1,104 35
50,000,000 24,000 1,697 4,561,785,823 87,843,193 972 17 1,056 17

100,000,000 47,593 325 8,945,635,983 62,156,023 955 6 1,040 17
500,000,000 261,951 8,742 48,364,776,587 988,448,176 1,027 19 1,280 52

1,000,000,000 535,503 11,073 96,229,010,019 1,410,837,470 1,022 14 1,260 35

Figure 4: Effect of problem size on the
computational time for solving the casting
scheduling problem.

Figure 5: Effect of problem size on the number
of heat-updates for solving the casting
scheduling problem.

www.maptek.com

Figure 4 shows a remarkable plot. The 𝑥𝑥-axis marks the problem size, whereas the 𝑦𝑦-axis shows the
computational time in seconds. The same computer is used stand-alone (without any time-sharing with
any other tasks) for these runs. The best, average and worst computational time for 5 runs, each starting
from a different initial population, are shown in the figure. For the 100-million, 500-million, and one-billion
variable problems, three runs are performed, due to multiple day requirement for this astoundingly large
dimensional search spaces. Both axes are shown in logarithmic scale. Since the resulting relationship is
almost linear with a slope of 1.11, this means a polynomial time (= 5.34(10−5)|𝒙𝒙|1.11) increase of CPU
time with an increase in number of variables (|𝒙𝒙|). A 10% increase in number of variables requires about
11.16% increase in computational time. This complexity is close to linear and is much smaller than
quadratic. Moreover, the variation of computational time in 5 runs is small in all cases as seen by very
close horizontal bounds around the circles, thereby indicating a reliable performance of PILP on
variables spanning over more than four orders of magnitude. The right vertical axis marks the respective
CPU time in actual seconds, minutes, hours and days, to have a better comprehension of the time used
to solve the problems. The 50,000 variable problem takes about 7 seconds and one billion variable
problem takes about 6.2 days, on an average.

We also record the number of heat-updates (the total number of variable manipulations) that a simulation
run considered before finding the final desired solution from start to end of the runs. The best, average,
and worst number of heat-updates are plotted with the problem size in Figure 5. A log-log plot shows an
almost linear relation between the number of heat-updates and problem size, thereby indicating a
polynomial (= 80.1|𝒙𝒙|1.007) complexity. This is very close to a linear complexity with number of variables
(𝑁𝑁 × 𝐻𝐻), meaning that with our proposed algorithm, an increase in one variable requires only about 80
additional variable manipulations to find the respective target solution. Since an identical population size
(of 60) is used for all problem sizes, the overall heat update varies almost linear to 𝑁𝑁 × 𝐻𝐻, which was
also arrived at in Section 3.5.

5.5.1 Implications of Handling Billion Variables
Solving a billion variable problem requires a high-performing computer, the implications of which we
discuss here. To store one solution having 1B integer variables requires 1 GByte of memory itself
(integer options from 0 to 255). With a population of size 60, this means a storage of 60 GBytes. Since
the proposed PILP requires two populations (parent and offspring) to be stored at every iteration, this
requires at least 120 GBytes of RAM in a computer to store both populations. For this study, we have
procured a desktop computer with 256 GB DDR4 RAM. We observe from a snap-shot of memory usage
during a run that in most part of the simulation 129 GB of 256 GB are used by PILP code. This is
consistent with our above rough calculation and indicates that the population approach of the PILP
algorithm demands a higher memory capacity as a flip side of its operation, but the ability of PILP
method to solve the specific ILP problems demonstrated in this study and the low-cost availability of
RAM to date outweigh and justify the use of a population-based approach for solving the ILP
problem efficiently.

Our PILP algorithm is able to remarkably and efficiently work on an astronomically large search space.
Although 16 values (integer values from 0 to 15) are used for each variable, considering even 10
different integer options, there are 10109 possible solutions in the search space, of which a very tiny
fraction (almost 1/10109) of solutions (with only 1,260 solution evaluations requiring a total of 96 billion
variable changes, on an average) were visited by our PILP algorithm to find the target solution for the
billion-variable problem. This is a remarkable achievement by any account.

www.maptek.com

6. CONCLUSIONS
In this paper, we have considered a casting scheduling problem motivated from a real-world foundry and
developed a customized optimization algorithm (PILP) for finding near-optimal solutions in a
computationally fast manner. The difficulty of the problem is the sheer number of integer variables,
leading to tens of thousands of variables. It has been observed that a public-domain glpk software was
able to solve only up to about 300-variable version of the problem in any reasonable amount of
computational time, and a commercial CPLEX software from IBM was not able to solve 2,000-variable
version of the problem. Due to the use of branch-and-cut methods to handle integer restrictions, these
point-based continuous-variable optimization algorithms are not scalable for handling a large number of
integer variables.

The proposed PILP algorithm uses a small population of solutions in each iteration. The initialization and
population update methods are customized to exploit the linearity aspect of the problem. The PILP
method uses a recombination operator that is considered and found to be the main search operator
providing the computational speed of reaching near-optimal search region quickly. On very large-sized
problems from 50,000 to record-setting one billion variables, our PILP algorithm has shown a polynomial
time complexity with an almost linear order. This is remarkable considering the wide range of problem
sizes being considered. The power of a population-based optimization algorithm lies in its recombination
operator, which has a unique ability to recombine partial and good information of two or more population
members into one new solution. It has been clearly demonstrated that the PILP algorithm performs well
mainly due to its recombination operator.

For the first time, in this paper, we have broken the billion-variable barrier in real-world optimization
problem-solving and demonstrated finding a near-optimal solution (with 99.7% close to the optimal
solution) in a sub-quadratic computational complexity.

Many other resource allocation and assignment problems have a similar structure to the casting
scheduling problem solved in this paper. Thus, we believe our proposed PILP algorithm is applicable to
many such problems with a small or no change in its structure. Our future attempts would be to identify
other such problems and develop modified methodologies for solving large-scale version of them as
computationally efficiently as demonstrated in this paper.

www.maptek.com

7. REFERENCES
[1] R. Andonov, V. Poirriez, and S. Rajopadhye. Unbounded knapsack problem: Dynamic

programming revisited. Euro. J. of Operational Research, 123(2):168–181, 2000.

[2] R. E. Bellman. The theory of dynamic programming. Bull. of Am. Mathematical Soc., 60(6):503–
515, 1954.

[3] K. Deb. Optimization for Engineering Design: Algorithms and Examples. Delhi: Prentice-Hall,
1995.

[4] K. Deb. An efficient constraint handling method for genetic algorithms. Computer Methods in
Applied Mechanics and Engineering, 186(2–4):311–338, 2000.

[5] K. Deb and S. Agrawal. Understanding interactions among genetic algorithm parameters. In
Foundations of Genetic Algorithms 5 (FOGA-5), pages 265–286, 1999.

[6] K. Deb, A. R. Reddy, and G. Singh. Optimal scheduling of casting sequence using genetic
algorithms. J. of Materials and Manufacturing Processes, 18(3):409–432, 2003.

[7] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Taming the curse of dimensionality:
Discrete integration by hashing and optimization. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), 2013.

[8] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. Computer Journal,
7:149–154, 1964.

[9] D. E. Goldberg. Genetic Algorithms for Search, Optimization, and Machine Learning. Addison-
Wesley, 1989.

[10] D. E. Goldberg, K. Sastry, and X. Llora. Toward routine billion-variable optimization using genetic
algorithms. Complexity, 12(3):27–29, 2007.

[11] J. H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: MIT Press, 1975.

[12] S. Iturriaga and S. Nesmachnow. Solving very large optimization problems (up to one billion
variables) with a parallel evolutionary algorithm in CPU and GPU. In Proc. of P2P, Parallel, Grid,
Cloud, and Internet Computing (3PGCIC-2012), pages 267–272. IEEE Press, 2012.

[13] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Verlag, 2004.

[14] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. Wiley,
1990.

[15] J. E. Mitchell. Branch-and-cut algorithms for combinatorial optimization problems. In Handbook
of Applied Optimization, pages 65–77. 2002.

[16] G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell. Engn. Optimization Methods and Applications.
Wiley, 1983.

[17] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. de Freitas. Bayesian optimization in high
dimensions via random embeddings. In Proc. of 23rd Intl. Joint Conf. on Artificial Intelligence,
pages 1778–1784, 2013.

	1. INTRODUCTION
	2. CASTING SCHEDULING PROBLEM
	3. A CUSTOMIZED COMPUTATIONALLY FAST ALGORITHM
	3.1 Customized Initialization
	3.2 Evaluation of Fitness Value
	3.3 Customized Recombination Operator
	3.4 Customized Mutation Operators
	3.5 Overall Time Complexity

	4. RESULTS USING INTEGER LINEAR PROGRAMMING (MILP)
	Table 1: Casting scheduling problem parameters used for initial comparative study

	5. RESULTS USING PILP
	5.1 Exploring Extent of Feasible Solutions
	Table 2: Casting scheduling problem parameters used as default in most of this study.

	5.2 A Typical Simulation
	Figure 1: Iteration-wise variation of population-average, population-best fitness value and computational time for one million version of the problem.

	5.3 Estimating an Appropriate Population Size
	Table 3: Fitness value and the number of solution evaluations are tabulated against different population sizes for 1M version. Results for the smallest median solution evaluations are marked in bold.

	5.4 Effect of Recombination and Mutation Operators
	Figure 3: Percentage of offspring population having better fitness value than previous iteration population-average solution.

	5.5 Effect of Problem Size: The Scale-up Study
	Table 4: PILP results on scale-up study.
	5.5.1 Implications of Handling Billion Variables

	6. CONCLUSIONS
	7. REFERENCES

